On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution.

نویسندگان

  • Qian Zhang
  • Zhonghua Zhang
چکیده

The electrochemical dealloying of rapidly solidified Al-based alloys in a 1 M NaCl aqueous solution has been investigated using electrochemical measurements in combination with microstructural analysis. The results show that nanoporous metals (Au, Ag, Pd and Cu) with various morphologies can be fabricated through electrochemical dealloying of the Al-based alloys in the NaCl solution. The electrochemical behaviors of elemental metals (Al, Au, Ag, Pd and Cu) and precursor alloys for dealloying have been studied through open-circuit measurements, potentiodynamic anodic polarization and cyclic voltammetry. The dealloying mechanisms of the precursor alloys and the formation of the nanoporous metals have been analyzed based on cyclic voltammetry curves, chronoamperometry curves obtained at potentials above or below the critical potentials, and microstructural features of the as-dealloyed samples. In addition, a classification for dealloying of a bi-phasic alloy has been proposed according to different dealloying behaviors of coexistent phases in the alloy. It has been found that interactions between coexistent phases prevail during dealloying of the bi-phasic alloy and are in principle dependent on the diffusivity of the more noble element, the curvature-dependent undercritical potential dissolution, and the reaction between the more noble element and chloride ion.

منابع مشابه

The Electrochemical Behavior of Al Alloys in NaCl Solution in the Presence of Pyrazole Derivative

This paper studies the corrosion inhibition of Al-Mg alloy system in 0.5 mol/dm3 NaCl solution in the presence of pyrazole derivative using potentiodynamic polarization and linear polarization method. The inhibition efficiency as a function of concentration and temperature was investigated. From the polarization curves, it can be concluded that the pyrazole derivative be...

متن کامل

Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys in NaCl Aqueous Solution

Corrosion behavior of two multiphase Mg-Li-Al-based alloys in 0.6 M NaCl aqueous solution is investigated by hydrogen gas evolution measurement and electrochemical test. This paper reports, for the first time, the comparison of hydrogen evolution and Tafel extrapolation results of Mg-Li-Al-based alloys. The corrosion rate of Mg-9Li-7Al-1Sn is observed to be reasonably higher when compared to th...

متن کامل

The Effect of Environmental Parameters on the Corrosion Behavior of Simple Shear Extruded AZ91 Magnesium Alloys

In this study, the effects of forming method (extrusion) and environmental factors (solution pH and temperature) on the corrosion performance of AZ91 magnesium alloys were investigated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and salt spray techniques. The polarization test results of the specimens showed that simple sh...

متن کامل

Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries

Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...

متن کامل

Dealloying and Stress Corrosion Craking of Copper Alloys in Cu(I) Solutions

Natural cases of dealloying or stress-corrosion cracking in copper alloys normally occur in oxygenated solutions, where the cathodic reactant is O2 or Cu2+. Within cavities or under deposits, the local environment is enriched in cuprous ions (e.g. CuCl2-, Cu (NH3)2+) and the potential is close to the Cu/Cu+ equilibrium. Such conditions can be simulated macroscopically by stirring powdered Cu2O ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2010